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Recently, machine learning methods have gained lots of attention from researchers

seeking to analyze brain images such as Resting-State Functional Magnetic Resonance

Imaging (rs-fMRI) to obtain a deeper understanding of the brain and such related

diseases, for example, Alzheimer’s disease. Finding the common patterns caused by

a brain disorder through analysis of the functional connectivity (FC) network along with

discriminating brain diseases from normal controls have long been the two principal

goals in studying rs-fMRI data. The majority of FC extraction methods calculate the FC

matrix for each subject and then use simple techniques to combine them and obtain a

general FC matrix. In addition, the state-of-the-art classification techniques for finding

subjects with brain disorders also rely on calculating an FC for each subject, vectorizing,

and feeding them to the classifier. Considering these problems and based on multi-

dimensional nature of the data, we have come up with a novel tensor framework in

which a general FC matrix is obtained without the need to construct an FC matrix for

each sample. This framework also allows us to reduce the dimensionality and create a

novel discriminant function that rather than using FCs works directly with each sample,

avoids vectorization in any step, and uses the test data in the training process without

forcing any prior knowledge of its label into the classifier. Extensive experiments using

the ADNI dataset demonstrate that our proposed framework effectively boosts the fMRI

classification performance and reveals novel connectivity patterns in Alzheimer’s disease

at its early stages.

Keywords: Alzheimer’s disease (AD) classification, functional connectivity, tensor, high order singular value

decomposition, dimension reduction

1. INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with a long pre-morbid
asymptomatic period, which affects millions of elderly individuals worldwide (Caselli et al.,
2004). It is predicted that the number of affected people will double in the next 20 years, and
1 in 85 people will be affected by 2050 (Brookmeyer et al., 2007). The predominant clinical
symptoms of AD include a decline in some important brain cognitive and intellectual abilities
such as memory, thinking, and reasoning. Early detection is important for possible delay of
the progression of mild MCI to moderate and severe stages (Folch et al., 2016). However,
diagnosis of MCI is difficult due to its mild symptoms of cognitive impairment, causing most
computer-aided diagnosis to achieve lower-than-desired performance (Musha et al., 2013; Li
R. et al., 2018). Precise diagnosis of AD, especially in its early warning stage, that is, early
Mild Cognitive Impairment (eMCI), enables treatments to delay or even avoid such disorders.
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In recent years, medical imaging techniques such as
positron emission tomography (PET) (Chandra et al., 2019),
electroencephalography (EEG) (Bi and Wang, 2019), computed
tomography (CT) scan (Ozdemir et al., 2019; van de Leemput
et al., 2019), intracoronary imaging (Gao et al., 2019), and
functional magnetic resonance imaging, which is a non-invasive
brain imaging technique (fMRI) (Golby et al., 2005), have been
used in order to analyze and detect disorders within body and
brain (Zhang et al., 2012; Han et al., 2013). Due to high spatial
resolution, fMRI is vastly used among researchers in order to
monitor brain activities, especially in AD and all its stages
in which detecting abnormalities within small brain regions is
essential (Dennis and Thompson, 2014). An fMRI sample is
naturally a 4D tensor consisting of 3D time-varying voxels, and
each voxel contains an intensity value that is proportional to the
strength of the Blood Oxygenation Level Dependent (BOLD)
signal, which is ameasure of the changes in blood flow to estimate
the activity of different brain regions. Resting-state fMRI (rs-
fMRI) is an fMRI technique in which the patient is asked to
rest during the whole scan and it focuses on the low-frequency

(< 0.1Hz) oscillations of BOLD signal presenting the underlying
neuronal activation patterns of brain regions. rs-fMRI is usually
used in order to analyze brain diseases like AD or Autism
(Leonardi et al., 2013; Kazeminejad and Sotero, 2019; Nguyen
et al., 2019). Different toolboxes such as GraphVar (Waller et al.,
2018), GraphCNN (Zhang et al., 2019), and BrainNetClass (Zhou
et al., 2020) are also developed to aid this cause.

Since each fMRI series consists of hundreds of thousands of
voxels, which are often highly correlated with the surrounding
voxels in the brain volume, parcellation of the brain for further
analysis has moved toward the use of anatomical atlases. These
atlases are strictly defined using anatomical features of the brain
like locations of common gyri and do not rely on any functional
information. To generate data using an atlas-based approach, the
BOLD signal from all voxels is averaged within each brain region
called region of interest (ROI) (Stanley et al., 2013). By putting
together the average time series for all the ROIs, the ith series
becomes Xi ∈ R

T×R, i = {1, 2, · · · , S}, in which R, T, and S are
the number of ROIs, time points, and samples, respectively. This
process is illustrated in Figure 1

There are two major studies associated with rs-fMRI data:
finding common brain disorders caused by diseases such as AD,
autism, schizophrenia, and so on, and more recently detecting
patients with brain disorders using classification techniques
(de Vos et al., 2018; Du et al., 2018). Due to the high
dimensionality of data along with the nature of diseases such
as eMCI, which does not show any reliable clinical symptoms,
researchers have moved toward advanced machine learning
techniques in order to achieve more reliable analysis (Cuingnet
et al., 2011).

A powerful tool that is commonly used in order to
achieve aforementioned goals is the functional connectivity (FC)
network. Let Xi be the ith sample, its corresponding FC, and
X̄ is a region × region matrix in which x̄ij represents the FC
between the ith and jth ROI. Functional connectivity is an
observable phenomenon quantifiable with measures of statistical
dependencies such as correlations, coherence, or transfer entropy

(Friston, 2011). Recent studies have shown that some brain
disorders such as AD could alter the way some brain regions
interact with each other. For example, compared with healthy
subjects, AD patients have been found with decreased FC
between the hippocampus and other brain regions, and MCI
patients have been observed with increased FC between the
frontal lobe and other brain regions (Dennis and Thompson,
2014).

FCs are also used as features in classification. So, instead of
using Xi as the ith sample, its corresponding FC, that is, X̄i, is
used as a feature. Common techniques for calculating FC, that
is, simple statistical measures such as coherence and Pearson
correlation, allow for different ambiguities (Smith, 2012; Reid
et al., 2019). And since brain alterations in early MCI are tiny,
more sophisticated and computationally expensive methods such
as partial correlation (Li Y. et al., 2018; Pervaiz et al., 2020),
high-order networks (Chen et al., 2016), and spectral clustering
(Liu et al., 2018) are required in order to achieve a better FC.
The computational cost of a sophisticated FC is usually high and
also its quality affects the performance of the learning process
massively. Also, since the conventional classifiers like Support
VectorMachine (SVM) or k-NN works on data in vector format,
these matrix features should be vectorized in order be fed to
these classifiers. This vectorization leads to high-dimensional
vectors that produce poor performance due to the phenomenon
known as the curse of dimensionality. Alongside the curse of
dimensionality, vectorization also destroys potential information
embedded in the structure of data. This problem has been studied
especially in image data in which vectorization destroys the
spatial relations within an image (Ahmadi and Rezghi, 2020).

In this paper, based on high-order tensor decomposition,
we have created a framework in which the aforementioned
goals, that is finding a general FC and detecting a disorder
through classification, could be achieved via a single High-
Order Singular Value Decomposition (HOSVD) of each class.
Here based on latent variables obtained by HOSVD, a general
representative pattern of FC for eMCI and normal controls are
obtained. As it was mentioned before, finding a proper FC is
a challenging task. Obtaining an FC via the proposed method
is not only fast and straightforward, but also very accurate.
The majority of connectivity patterns detected by this method
have been observed and studied in several separated types of
research (cited in the experimental studies section), which show
the reliability and power of the proposed method. Along with
these connections, we have also detected novel connectivities
especially regarding the cerebellum, which is usually discarded
in the analysis of AD.

The proposed classifier is also much faster than the state-
of-the art classifiers, and also uses the obtained rs-fMRI data
directly in the classification process rather than calculating its
corresponding FC matrix. Being able to feed Xis directly to the
classifier saves us from a lot of problems related to calculating
the proper FC. It also shows that the proposed classifier is strong
enough to detect tiny alterations, which other state-of-the-art
methods rely on finding FC to highlight.

To verify our approach, we conducted an extensive
experimental study on rs-fMRI data from the benchmark
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FIGURE 1 | The process of obtaining Xi ∈ R
T×R, i = {1, 2, · · · ,S}.

dataset ADNI. As will be seen, the results demonstrate the
effectiveness and advantages of our method. Specifically, the
proposed framework not only grants us superior classification
accuracy to that from other methods, but it is also much faster
and more stable against different data selection schemes. We
have also confirmed our achieved general FC matrix using
empirical data on the eMCI and normal FC patterns.

2. RELATED WORKS

As it was mentioned previously, obtaining and classifying
FC matrices have become the dominant approach toward
eMCI analysis. Variety of methods such as pairwise Pearson’s
correlation coefficient, sparse representation (Jie et al., 2013),
and Sparse Inverse Covariance Estimation (SICE) (Huang et al.,
2010) exist to obtain an FC. While the first two are easy to
understand and can capture pairwise functional relationship
based on a pair of ROIs, the latter can account for more complex
interactions among multiple ROIs, but the estimation of partial
correlation involves an inversion of a covariance matrix, which
may be ill posed due to the singularity of the covariance matrix.
These methods result in vastly different networks (Du et al.,
2018). On the other hand, computing the correlations, based
on the entire time series of fMRI data simply measures the FC
between ROIs with a scalar value, which is fixed across time.
This actually implicitly hypothesizes the Stationary interaction
patterns among ROIs, which will result in a static functional
connectivity (sFC). As a result, this method may overlook the
complex and dynamic interaction patterns among ROIs, which
are essentially time-varying (since the phase is not locked for
every subject). In order to overcome this issue, Non-stationary
methods have been proposed, which result in more complex
networks and also known as dynamic functional connectivity
(dFC) (Leonardi and Van De Ville, 2015; Kam et al., 2019). The
most common and straightforward way to investigate dFC is
using windowed FC, which consists of calculating a given FC
measure, for example, the Pearson correlation coefficient, over
consecutive windowed segments of the data (Zalesky et al., 2014).
Although such an analysis seems straightforward, there are also
pitfalls associated with it, which may cause in a non-accurate FC
network (Hindriks et al., 2016).

In the following, we briefly discuss two state-of-the-art eMCI
classification techniques belonging to these two paradigms:

Kernel compact SICE (K−SIEC): SICE matrix have proven
itself to be one of the best sFC models (Huang et al., 2010; Ng
et al., 2013; Colclough et al., 2018; Foti and Fox, 2019), which is
extracted via the following optimization:

S∗ = argmax
S≻0

log
(
det(S)

)
− tr(CS)− λ ‖S‖1 (1)

where C is the sample-based covariance matrix; det(1), tr(1),
and ‖.‖1 denote the determinant, trace, and the sum of the
absolute values of the entries of a matrix, respectively. In
classification with FC features, the vectorized SICE of each
sample is used (Leonardi et al., 2013). The occurrence of the
curse of dimensionality and losing useful information contained
in the SICE matrices [like symmetric positive definite (SPD)
property] are twomain drawbacks of this vectorization approach.
As an inverse covariance matrix, an SICE matrix is SPD. This
inherent property restricts SICE matrices to a lower dimensional
Riemannian manifold rather than the full dimensional Euclidean
space. This property allows some SPD manifold-based distances,
like log-Euclidean distance (Arsigny et al., 2006) and Root Stein
divergence (Sra, 2012) to be employed in kernel-based PCA to
extract a compact representation of brain network (Zhang et al.,
2015). The power of this method resides in a massive dimension
reduction of SICE using its SPD property. The performance of
this method also heavily relies on the choice of sparsity parameter
λ for SICE calculations and the number of top eigenvectorsm.

High−order networks (HON): This method which is
proposed in Chen et al. (2016) belongs to non-stationary
paradigm and uses the so-called high-order networks as features
for classification purposes. It uses the sliding-window technique
in order to split the time series into smaller pieces and then
find the relation between them (Chang and Glover, 2010;

Handwerker et al., 2012; Allen et al., 2014). Let x
(l)
i (k) ∈ R

N

denotes the kth segment of the ith region in the lth sample. For

each sample, a network with nodes x
(l)
i (k) could be constructed,

in which its edge weights are obtained as

C
(l)
ij (k) = corr

(
x
(l)
i (k), x

(l)
j (k).

)
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Here, the weight C
(l)
ij (k) represents the pairwise Pearson’s

correlation coefficients between the ith and the jth ROIs of the
lth subject using the kth segment of subseries. Now

y
(l)
ij =

[
C
(l)
ij (1),C

(l)
ij (2), · · · ,C

(K)
ij (1)

]
∈ R

K

represents the similarity of the ith and jth ROIs of the lth sample

in all segments. For each l by considering y
(l)
ij as nodes of a

networks with weights

H
(l)
ij,pq = corr

(
y
(l)
ij , y

(l)
pq

)

a higher-order network is obtained for each sample. Here for

each pair of correlation time series yij and ypq, H
(l)
ij,pq indicates

how the correlation between the ith and the jth ROIs influences
the correlation between the pth and the qth ROIs. So for each

sample its higher-order networks {H
(l)
ij,pq} will be a matrix with

size R4 × R4(R is the number of regions), which will lead to a
large-scale high-order FC network, containing at least thousands
of vertices and millions of edges. In order to overcome this
issue, the correlation time series within each subject are grouped
into different clusters. Then, the correlation computations are
carried out between the means of clusters. After reducing the
network size, the weighted-graph local clustering coefficients is
used to select the key features for each network and then an
SVM classifier is trained in order to classify the obtained features.
As a result of constructing a high-order network, the notion of
a physical ROI become vague and thus such networks are not
preferable choices in order to analyze functional connectivities.

Our method overcomes the dynamic-stationary problem of
FC construction by working in HOSVD-based domain, which
considers the dynamic nature of data and is much more
sophisticated than using a windowed FC. The obtained FC
also considers all subjects within a class simultaneously, rather
than calculating FC for each subject separately that highlights
common patterns in a class and eliminates possible outliers
within data. The proposed framework also does not require any
FC calculations for classification, which is a major advantage
since finding a proper FC for each subject might be a very
challenging task.

Multilinear approaches have been used before in order to
analyze fMRI data. For example, Park (2011) uses multilinear
PCA to classify fMRI data by Subject and Motor Task. Ozdemir
et al. (2017) and Al-sharoa et al. (2018) use tensor decomposition
and clustering techniques for analyzing brain connectivity
networks and proves the dynamic nature of rs-fMRI. Recently,
Ma et al. (2016) and He et al. (2017) proposed a multilinear
method for voxel-wise analysis of rs-fMRI, which is used in order
to detect late AD and some other diseases. Leonardi and Van
De Ville (2013) considers dynamic whole-brain FC estimated
from fMRI data acquired during alternating epochs of resting
and watching of movie excerpts, and uses HOSVD in order
to retrieve connectivity maps with associated time courses and
subject loadings. This method uses the sliding-window technique
in order to estimate the dynamic connectivity matrix for each

subject, and then it constructs a 3-way tensor R ∈ RC×T×T ,
by stacking the dynamic correlation matrices R of all subjects.
Considering the HOSVD of R, this method obtains a matrix
columns of which could be interpreted as group connectivity
maps. There are similarities between this method and ours
since they both take advantage of HOSVD. But our framework
introduces major advantages such as (1) our framework does not
require any FC calculations for its classifier. And (2), it is able to
work with rs-fMRI, which is harder due to less constraint status
of subjects.

3. NOTATION AND PRELIMINARIES

Tensors can be considered as a generalization of vectors and
matrices of high dimensions.We use calligraphic letters to denote
the tensors, for example, (A,B). Let A ∈ R

I1×I2×I3 denote an
order-3 tensor. Different “dimensions” of tensors are referred to
as modes. We will use both standard subscripts and “MATLAB-
like” notation to show tensor elements as follows:

A(i, j, k) = aijk.

A fiber is a subtensor, where all indices but one are fixed. For
example, mode-2 fibers ofA have the following form:

A(i, :, j) ∈ R
I2 .

The mode-n product of an order-M tensor A ∈ R
I1×···×IM by a

matrix X ∈ R
K×In is defined as:

R
I1×···×In−1×K×In+1×···×IM ∋ B = (X)n · A, (2)

where,

bi1 ,··· ,iM =

In∑

l=1

xin,l , ai1 ,...,in−1 ,l,in+1 ,...,iM .

This means that all mode-n fibers of A are multiplied by the
matrix X. The notation (2) was suggested by De Silva and Lim
(2008). An alternative notation was earlier given in De Lathauwer
et al. (2000). (X)n · A is the same as A ×n X in that system.
The Frobenius norm of the order-M tensor A can be defined as
‖A‖ =

∑
i1 ,··· ,iM

a2i1 ,··· ,iM .

3.1. Higher-Order Singular Value
Decomposition
HOSVD is one common extension of singular value
decomposition to the tensors (De Lathauwer et al., 2000).
Using HOSVD, every order-M tensor A ∈ R

I1×···×IM can be
decomposed as:

A =
(
U(1), · · · ,U(M)

)
· S (3)

where orthogonal matricesU(i) are singular matrices of tensorA.
Here, U(i) is the left singular matrix of A(i), in which its column
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vectors are the mode-n fibers of A. The core tensor S is a real
tensor of the same dimensions asA and

S =
(
U(1)T , · · · ,U(M)T

)
· A

Although this core tensor is not diagonal as in the case of SVD of
matrices, it satisfies the following conditions:

• All orthogonality property:Any two different slices along the
same mode are orthogonal. This property of core tensor S is
named as all orthogonality.

• The ordering property: The values skj =∥∥S(:, · · · , :, j, :, · · · , :)
∥∥, where j is in the kth mode of S,

are named mode-k singular values of A. It can be shown that
for every k

sk1 ≥ sk2 ≥ · · · ≥ skn ≥ 0, k = 0, · · · ,M, (4)

are equal to the singular values of the matrix A(k). This means
that the norms of the slices along every mode are ordered.

• Oscillation: It can be shown that as the indices increase, the
singular vectors of each mode shows more oscillation. Based
on this property, it can be shown that noises and outliers
within the data are transferred into these high oscillation
parts (Rezghi, 2017). Based on this fact and also the ordering
property, the truncated version of HOSVD can be deployed as
a noise reduction and compression tool (Lv and Wang, 2019).

The ordering property (4) demonstrates that, in the same way
as matrices, singular values measure the energy of the tensor.
So, it is easy to see that the energy of core tensor S focused on
the elements of S with small indices. This property of HOSVD
(similar to SVD) is very useful in the applications that encounter
denoising problems. So, ifU l

kl
contains the first kl singular matrix

and Ŝ = S(1 : k1, · · · , 1 : kM), the following truncated HOSVD:

Â =
(
U

(1)
k1

, · · · ,U
(M)
kM

)
1 :M

· Ŝ,

is a rank-(k1, · · · .kM) approximation of A. Although this is not
an optimal rank-(k1, · · · .kM) approximation ofA, it is still a good
approximation and we have:

∥∥∥A− Â

∥∥∥ =

M∑

i=1

ri∑

j=ki+1

s
(i)2

j ,

where ri is the rank of A
i (De Lathauwer et al., 2000).

4. PROPOSED FMRI ANALYSIS
FRAMEWORK BASED ON HOSVD

In this section, which is divided into three subsections we
first tackle the problem of classification, that is, designing a
discriminant function that could predict the label of an unknown
test subject. The second part describes a technique, which would
enhance the designed classifier and the third part is allocated to
find a general connectivity network for each class (e.g., eMCI

subjects). All three aforementioned goals, that is, classification
and its enhancement and finding a general FC for each class,
evolve around a single HOSVD of each class, which provides us
with basis for each mode (time, region, and sample) and enables
us to capture the essence of each feature in a few low dimensional
slices. We will use the obtained low-dimensional bases along the
sample and region mode in order to design our discriminant
function and obtain the general FC. The enhancement technique
also comes from HOSVD characteristics, which enables us to
involve test samples in the training process without forcing any
a priori knowledge into the classifier.

4.1. eMCI Classification
Let tensors X(i) ∈ R

T×R×Si consists of normal and eMCI data for
i = 1,2, respectively. Here S1, S2 are the number of normal and
eMCI samples. For tensor X(i), the decomposition

X
(i) =

(
U(i),V(i),W(i)

)
· S

(i), (5)

is known as HOSVD, where orthogonal matrices U(i) ∈

R
T×T ,V(i) ∈ R

R×R, andW(i) ∈ R
Si×Si are known as modes-1,2,3

singular matrices ofX(i), and S(i) is the corresponding core tensor
(Rezghi, 2017). Here,U(i) is a base of all mode-1 fibersX(i)(:, l, k),
which indicates the behavior of lth region of the kth sample of
the ith class in all time points. Also V(i) is a base of all mode-2
fibers X(l, :, k), which indicates the behavior of all regions of lth
sample of the ith class in the kth time. Due to the properties of
HOSVD inherited from svd, the first columns of the kth singular
matrix (k = 1, 2, 3) have more ability in construction of main
parts of kth fibers (Rezghi, 2017). Therefore, a suitable dimension
reduction would be to project the mode-1 and mode-2 fibers into
space spanned by the first ki1 and ki2 singular vectors of modes-

1,2, which will be denoted by U
(i)

ki1
and V

(i)

ki2
, respectively. This

dimension reduction could be done as:

R
k1×k2×Si ∋ X̄

(i)
=

(
U

(i)T
ki1

,VT
ki2

)
1,2

· X
(i) (6)

It is clear that this reduction could be done separately on each
mode without the need to fold any of them. This means that
the structural integrity of data is preserved during the dimension
reduction process, which is a key aspect in our work. It has been
shown that even choosing relatively small values for k11 and ki2
would result in a very good reconstruction error (Ahmadi and
Rezghi, 2020).

Inspired by the structure of this reduction, in the following
we present a tensor-based discriminant function. By HOSVD

decomposition of X(i), the projected data X
(i)

in Equation (6)
becomes

X̄
(i)

=
([

Iki1
0
]
,
[
Iki2

0
]
,W(i)

)
· S

(i)

=
(
W(i)

)
3
· S

(i)(1 : k1, 1 : k2, :)
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So, each sample of the ith class in the reduced space has the
following form:

X̄
(i)
(:, :, k) =

(
W(i)(k, :)

)
3
· S

(i)(1 : ki1, 1 : k
i
2, :)

=

Si∑

k′=1

W(i)(k, k′) · S
(i)(1 : ki1, 1 : k

i
2, k

′).

This means that each sample in the ith class could be represented

as linear combination of the slices of the tensor S
(i)

=

S(i)(1 : ki1, 1 : k
i
2, :). So if a test data like X ∈ R

T×R belongs to
the ith class, it is natural to expect that its projected version into
principle region and times spaces, spanned by Uki1

,Vki2
, that is,

Z(i) =
(
U

(i)T
ki1

,V
(i)T
ki2

)
1,2

· X

could be approximated well as a linear combination of the slices

of the tensor S
(i)

as follows:

Z(i) ≈

Si∑

k=1

λikS
(i)
(:, :, k). (7)

Based on this viewpoint, each test data X could be assigned to
a class that its projected version has the best approximation in
the form (7). Due to the importance of core tensor elements with
small indices in the reconstruction of the signal part of data in
comparison with its last parts, the small number ki3 < Si of slices

S
(i)
(:, :, k) could be used in (7). In this viewpoint, each test data X

would be assigned to the lth class, if rl = mini=1,2 ri, where

ri = min
λi

‖Z(i) −

ki3∑

k=1

λikS
(i)
(:, :, k)‖, λi =




λi1
...

λsi


 (8)

ri shows the reconstruction error of the projected version of X in
the ith class.

4.2. Enhancing the Classifier
Consider that the test data X is added to dataset X(i) of the ith
class. So the new dataset will be X̃∈ R

T×R×(Si+1):

X̃
(i)
(:, :, 1 : Si) = X

(i),

X̃
(i)
(:, :, Si + 1) = X.

If X belongs to the ith class, then in the decomposition of X̃
(i)
, X

would be able to reinforce all slices of the core tensor and singular
matrices. And thus enhances the reconstruction ability of (8) that
would lead into a lower reconstruction error for the test subjectX.
On the other hand, if X does not belong to the ith class, HOSVD
would naturally consider it as noise [based on ordering property
(4)], sinceX is not similar to other samples and thus does not play
a key role in reconstructing them, so its effect would be on the last
slices of the core tensor and singular matrices, that is, slices with
higher indices that are ignored in reconstruction (8).

In order to better demonstrate this effect, we conducted
the following experiment: we randomly chose a test subject
Xn from the class of normal subjects in ADNI dataset (this
dataset is explained in detail in the experimental study section).
The remaining normal samples are then gathered in a tensor
X(1) ∈ R

130×116×37. By adding Xn to this tensor, we obtained

the incremented tensor X̃
(1)

∈ R
130×116×38. We compute the

HOSVD of these two tensors and plot the absolute mode-3
differences in Figure 2. As can be seen in this figure, since
Xn belongs to the normal class, it effectively changes almost
all singular values and so could improve the approximation in
Equation (8). Then we randomly select an eMCI sample Xe and
add it to X(1) to construct another incremented version of it. The
orange line in equation (Figure 2) shows the absolute mode-3
differences between these two tensors. It can be observed that
adding an eMCI subject to the class of normal subjects only
affected the last singular values and have a very low impact on
the first singular values.

It can be concluded that adding unknown labeled test data
to all classes before the basis extraction process would heavily
impact the true class bases, and it has a rather negligible or
in ideal case zero impact on the bases of other classes. As a
result, after extracting the basis for each class in this manner, the
reconstruction error (Equation 8) would be lower for the true
class. Note that in the training process, the test data are added
to all classes and they are uninformed of its label. Thus, no a
priori knowledge is sneaked into the decision-making process.
Algorithm (1) summarizes the proposed classification method.

Algorithm 1: Tensor-based classification method

1) Input: Normal train data X(1), eMCI train data, X(2)

kij, i, j = 1, 2.

Test data X
2) Construct X̃

(i)
for i = 1, 2, by adding X to both tensors.

3) Compute Uki1
,Vki2

and S(1 : ki1, 1 : k
i
2, :) of X̃

(i)
, for i= 1,2.

4) Compute Z(i) =
(
U

(i)T
ki1

,V
(i)T
ki2

)
1,2

· X, i = 1, 2.

5) Comput r1, r2 from (8)
6) Assign X to class l, if l = argmini{ri}

4.3. General Functional Connectivity
In the ith class, which is represented by X(i), the slice X(i)(:, l, :)
denotes the behavior of lth region of all samples in all times.
This slice could be considered as a feature for the lth region of
the ith class, so each region is represented as a Times-sample
feature matrix. By the properties of singular matrices in modes-
1,3, and for appropriate values ki1, k

i
3, each region X(:, l, :) could

be reduced in both time and sample features separately based on

mode-1 and mode-3 truncated singular matrices U
(i)

ki1
and W

(i)
k3

as follows:

Y
(i)(:, l, :) =

(
U

(i)

ki1

T
,W

(i)
k3

T
)

1,3

· X
(i)(:, l, :). (9)
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FIGURE 2 | The absolute value difference of the third mode singular values of normal and eMCI data with and without involving test data in construction of HOSVD.

Here Y(i)(:, l, :) denotes a reduced version of X(i)(:, l, :) into space

spanned by U
(i)

ki1
andW

(i)
k3

in modes-1,3. So,

R
ki1×R×ki3 ∋ Y

(i) =

(
U

(i)

ki1

T
,W

(i)

ki3

T
)

1,3

· X
(i) (10)

denotes all reduced regions of the ith class. By this structure and
substituting the HOSVD decomposition ofX(i) in (10), we obtain

Y
(i) =

([
Iki1

0
]
,V ,

[
Iki3

0
])

· S
(i)

= (V)2 · S
(i)(1 : ki1, :, 1 : k

i
3)

thus

Y
(i)(:, k, :) =

R∑

k′

V(i)(k, k′)C̄
(i)
(:, k′, :)

=
(
V(i)(k, :)

)
2
· C

(i) (11)

in which

R
ki1×R×ki3 ∋ C

(i) = S(1 : ki1, :, 1 : k
i
3).

Equation (11) shows that the reduced version of each region
in the ith class could be written as the linear combinations
of mode-2 slices of C(i). So the coefficients of slices in this
linear combination could be considered as a new feature for
the lth region of the ith class. Also as we mentioned before, the
first slices are better than the last ones to reflect the principle
properties of the data. So for appropriate ki3 we could select only

the first coefficients in (11) as new features for the lth region.
Mathematically, this means each region in the ith class could be

represented by a new feature vector V(l, 1; ki3) ∈ R
ki3 .

This approach has two main benefits: (1) each region could be
represented only by a vector with size ki3 instead of a large time-
sample matrix, and (2) the bases for each region is obtained in
an HOSVD-based domain that is similar to Fourier frequency
domain; but unlike Fourier, this transformation to HOSVD-
domain is data dependent and hence the time-varying nature
of rs-fMRI signals (2) would be taken into consideration (Rövid
et al., 2013; Ozdemir et al., 2017). After representing each region
with a single low dimensional vector, variety of methods such as
SICE and othermentioned similaritymeasures could be deployed
in order to construct a general FC for each class.

5. EXPERIMENTAL STUDY

5.1. Data Acquisition and Experimental
Settings
RS-fMRI data of early MCI and NC patients were downloaded
from ADNI website1. After removing subjects that had problems
in the preprocessing steps, 44 eMCI and 38 NC subjects
remained. The IDs of the 82 (38 NC and 44 early MCI) subjects
are provided in the Supplementary Material.

The data are acquired on a 3-T (Philips) scanner with
TR/TE set as 3,000/30 ms and flip angle of 80. Each series
has 140 volumes, and each volume consists of 48 slices of
image matrices with dimensions 64 × 64 with voxel size of
3.31 × 3.31 × 3.31 mm3. The preprocessing is carried out using

1http://adni.loni.usc.edu
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SPM12 and DPARSFA (Chao-Gan and Yu-Feng, 2010). The
first 10 acquired rs-fMRI volumes of each subject were initially
discarded before any further processing to ensure magnetization
equilibrium. The remaining 130 volumes were then corrected
for the staggered order of slice acquisition that was used during
echoplanar scanning. The correction ensures the data on each
slice correspond to the same point in time. To further reduce the
effects of nuisance signals, regression of ventricle andWM signals
as well as six head-motion profiles was performed. rs-fMRI
images were then normalized to the MNI space with resolution
of 3.31 × 3.31 × 3.31 mm3 (Wee et al., 2016). Participants
with too much head motion are excluded. The normalized brain
images are warped into automatic anatomical labeling (AAL)
(Tzourio-Mazoyer et al., 2002) atlas to obtain 116 ROIs as nodes.
By following common practice (Park, 2011; Leonardi and Van
De Ville, 2013; Al-sharoa et al., 2018), the ROI mean time series
are extracted by averaging the time series from all voxels within
each ROI and then bandpass filtered to obtainmultiple sub-bands
as in Al-sharoa et al. (2018). After the preprocessing steps, we
obtained the normal samples X(1) ∈ R

130×116×38 and eMCI
samples X(2) ∈ R

130×116×44.

5.2. Classification
Almost every subject in ADNI dataset has several (≈ 6)
individual rs-fMRI data series, that is, a patient might be scanned
several times during a period of time. Usually, a random rs-
fMRI data are selected and enters the processing step (Zhang
et al., 2015). This random selection may cause several problems.
Since the number of train data is very low, a small alteration in
the samples could drastically change the set of input parameters
in order to achieve the highest accuracy. Also achieving high-
quality results with a classifier does not guarantee its effectiveness
on other datasets even with fine-tuning the parameters, since
the training set may contain outliers and unidentified corrupted
data. In order to show that the proposed framework is less
sensitive against the choice of different permutations of data,
we have selected 18 different random permutations (i.e., each
permutation contains a different rs-fMRI series, for each subject)
and tested two state of the art eMCI classification methods on
them: HON (Chen et al., 2016) and k−SICE (Zhang et al.,
2015). We have used five evaluation measures: accuracy (ACC),
sensitivity (SEN), Youden’s index (YI), F-score, and balanced
accuracy (BAC). The detailed definitions of these five statistical
measures are provided in equation (Table 1), where TP, TN, FP,
and FN denote the true positive, true negative, false positive, and
false negative, respectively, and precision = TP

TP+FP and recall =
TP

TP+FN . In this article, we treat the eMCI samples as positive class
and the NC samples as negative class.

5.2.1. Classification Performance

After fine-tuning the input parameter set for each method, the
classification accuracy measure (ACC) shows that for 16 out of 18
different random selected datasets, our approach performs better
than k-SICE the same also holds for 15 datasets comparing to
HON, that is, in 88.8% of datasets the proposed method works
better than k-SICE, and in 83.3% of datasets, it works better than
FON. The highest classification accuracy (86.59%) is achieved

TABLE 1 | Definitions of five statistical measurement indices.

Measurement Definition

Acc
TP+ TN

TP+ FP+ TN + FN

SEN
TP

TP+ FN

YI SEN + SPE − 1

F-Score 2×
precession× recall

precesion+ recall

BAC
1

2
(SEN+ SPE)

TABLE 2 | The average of different classification measurements in all dataset

permutations in percent.

Method ACC F-Score SEN YI BAC

k-SICE 75.57 77.36 78.50 50.69 75.34

HON 75.66 77.44 78.40 50.89 75.44

Proposed 80.43 82.20 84.60 60.20 80.09

Higher values are indicated by bold numbers.

with the proposed method in the 15th sample data. The highest
accuracy for the HON (84.15%) is achieved in the 14th, and the
highest accuracy for the SICE method (85.37%) is achieved in
the 6th sample data. As it was mentioned before, being stable
when the input dataset changes is a very important aspect for a
classifier, in order to measure the stability, the standard deviation
of accuracy along with other measures is calculated. The standard
of accuracy for the proposed method is 0.64 times less than HON
and 1.73 times less than k-SICE method. Similar results hold for
other classification measures as well.

Figure 3 shows the performance of these three methods in all
five measurements. For a better demonstration, Table 2 provides
the average of several classification measurements scores for all
dataset permutations. As it can be seen in this table, the average
accuracy of proposed method, which is 80.43%, is 4.77% higher
than the next method HON and 4.86% better than k-SICE. It
is noteworthy that the other two methods, that is, HON and
SICE, show similar results in average. The average F-score of the
proposed method is also higher than other two, which shows a
balanced prediction for both classes. Having a higher sensitivity
(SEN) score, which measures the proportion of actual positives
that are correctly identified as such, shows that the proposed
method works better in detecting eMCI subjects. The YI is a
measure for evaluating the biomarker effectiveness and having
a higher YI yields a more informative decision (Youden, 1950).
Our YI score is roughly 1.2 times better that other two methods.
Similar to F-score, having a higher Balanced Accuracy Score
(BAC) yields more balanced predictions. It is also noteworthy
that the proposed method have much less standard deviation
in all five measurements, which indicates its effectiveness and
robustness toward different datasets.

One other key aspect of the proposed classifier is that it
works significantly faster that the other two, especially in the
training process. Our method is more than 600 times faster than
HON and 20 times faster than SICE. Having a huge execution
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FIGURE 3 | Comparison of proposed method (Prop) with K-SICE and HON applied on 18 different dataset permutations in five different classification evaluation

measures. (A–E) show accuracy, F-Score, balanced accuracy, sensitivity, and Youden Index, respectively, along with the maximum, minimum, and standard deviation

of each one presented in the embedded table (F).

time especially affects the parameter selection scheme since all
these methods use cross-validation procedure in order to find
the optimal parameters, which itself requires several runs of
the algorithm.

5.3. Functional Connectivity Network
The vector features for both normal and eMCI classes were
obtained via the proposedmethod as it is described in section 4.3.
Due to the aforementioned qualities of partial correlation, SICE
is deployed in order to obtain the final FC. In order to better
highlight the differences between normal and eMCI subjects,
a difference graph D is constructed by subtracting the normal
FC from the eMCI FC. This graph could be seen in Figure 4.
The nodes of D show the ROIs according to the AAL atlas.
The size of each node is proportional to its graph clustering
coefficient, that is, the bigger node demonstrates higher activity
in eMCI subjects in the corresponding ROI. Similar to nodes,
the size of each edge is also proportional to the correlation
between two ROIs. In addition, the edges are also color coded
in a way that the green edges show the positive edges in D and
the red edges show the negative edges in D. In this manner,
the green edges demonstrate a decrease in activity between

the corresponding nodes in eMCI subjects, and the red edges
show increasing activity between corresponding ROIs in the
eMCI subjects.

As it can be seen in the difference graph, the big nodes,
that is, ROIs with higher activities, do not necessarily establish
strong connections with the other nodes. As an obvious example,
higher activities in lingual gyrus (ROI index: 47, 48) (He et al.,
2007), calcarine sulcus (ROI index: 43, 44) (Bakkour et al.,
2013; Brewer and Barton, 2014), supplementary motor area (ROI
index: 19, 20) (Brewer and Barton, 2014; Jacobsen et al., 2015),
and temporal_mid_L (ROI index: 85) (Kosicek and Hecimovic,
2013) are easily detectable. The majority of ROIs located in
frontal lobe also show rather high activities compared to normal
subjects (Dennis and Thompson, 2014; Salvatore et al., 2015).

Similar to the nodes, the strong edge between two ROIs does
not necessarily require the nodes to be highly active in eMCI,
although a strong edge does indicate high activities and FC
between the two corresponding ROIs. The difference in graph
shows a significant increase in connectivity between Rectus (ROI
index: 28, 27 in frontal lobe) and Parietal_Sup_R (ROI index:
60 in parietal lobe) (Brickman et al., 2015; De Reuck et al.,
2015), Frontal_Inf_Orb_R (ROI index: 16 in frontal lobe) and
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FIGURE 4 | The difference graph. This graph is obtained via subtracting the functional connectivity of eMCI subjects from normal subjects. Each circle represents an

ROI in AAL atlas, and the color and size of each circle are proportional to the graph clustering coefficient of the difference graph. Red: more activity in EMCI, green:

less activity in EMCI.

Cingulum_Ant (ROI index: 31, 32 in limbic lobe) (Perani et al.,
2017), Insula_L, Temporal_Pole_Sup_L (ROI index: 29, 83 in
limbic lobe) and Pallidum_R, Caudate_R (ROI index: 29, 83 in
sub-cortical gray nuclei) (Watson et al., 2016). It can also be
seen that within activities, frontal lobe also increased in patients
with eMCI (Cai et al., 2015). There is a decrease in connectivity
between Amygdala_L (ROI index: 41 in sub-cortical gray nuclei)
with Frontal_Mid_Orb_R (ROI index: 10 in sub-frontal lobe)
and ParaHippocampal_L (ROI index: 39 in sub-limbic lobe)
(Ortner et al., 2016). The connectivity between Heschl_L (ROI
index: 79 in temporal lobe) and two ROIs Temporal_Mid_R
(ROI index: 86 also in temporal lobe) and Occipital_Inf_R
(ROI index: 54 in occipital lobe) also decreased in eMCI
(Steketee et al., 2016).

5.3.1. Regarding the Cerebellum and Vermis
In fMRI data analysis and especially in AD studies, ROIs within
the cerebellum and vermis are usually excluded since their role
was regarded as insignificant (Sanz-Arigita et al., 2010; Zhang
et al., 2011). Recent studies have shown that the traditional
assumption that cerebral area is essential only to the coordination
of voluntary motor activity and motor learning is not valid and
indicates the significant role of the cerebellum in nervous system
function, cognition, and emotion (Jacobs et al., 2017).

As it can be seen in the difference graph that we
obtained, ROIs within cerebellum and vermis are highly active
and both their Intra and interconnections are noticeable.
There is increased FC between the limbic lobe, especially
Hippocampus_R, Temporal_Pole_Mid (ROI index: 38, 87, 88)
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and cerebral areas in eMCI patients. Also, the connectivity
between occipital lobe, especially occipital_mid_R (ROI index:
52), the frontal lobe, especially in frontal_mid_orb (ROI
index: 9,10), and cerebral areas seems to decrease in patients
with eMCI.

6. CONCLUSION

In this article, we proposed a tensor framework for eMCI
diagnosis and FC construction. There are two main issues
associated with rs-fMRI analysis and in particular eMCI
diagnosis. The first is that the majority of state-of-the-art fMRI
classification techniques use the FC matrix as the feature for
their discriminant function; hence, they have to deal with many
challenges that are associated with FC calculations. The second
comes from the fact that FC networks are among the best tools
for studying brain activities, but the stationary and dynamic FC
conflict and the fact that the majority of methods belonging
to these paradigms work only with one sample would lead
to vastly different brain networks. Therefore, we developed a
tensor framework, which is able to directly use the samples
in classification without the need for any FC calculations and
is also able to calculate a general FC network that considers
the time-varying nature of rs-fMRI signals since it works in
the data-dependent HOSVD-domain and is able to consider all
subjects within a class in order to obtain these connectivities.
The proposed method is not only fast, but it also outperforms
state-of-the-art techniques.

One possible drawback of this framework is the need for
HOSVD calculation for both classes in each test phase. Although
this problem is negligible in eMCI classification (since the
number of samples is not high), it could be time consuming
for larger datasets. In order to resolve this issue, incremental
HOSVD calculations may be deployed that will accelerate
the calculations.
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